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Abstract 

We investigate the question "When is the near-ring, MR(V), of homogeneous functions a 
ring'?" for modules over commutative Noetherian rings. Particular attention is directed to the 
case in which V is an injective module. @ 1998 Elsevier Science B.V. 

1991 ,~ath. Subj. Class.: 16Y30, 13Cll 

1. Introduction 

Let R be a ring with identity and V a unital R-module. The set, MR(V) = { f : V  -+ 

V I f ( r v )  = r f (v ) ,  V'r E R, Vv E V}, with the operations o f  function addition and 

function composition is a zero-symmetric near-ring with identity called the centralizer 

near-ring determined by (R, V) or the near-ring of  homogeneous functions determined 
by (R, V). This near-ring has been the object of  several investigations. In [3], the 

problem of  characterizing those rings R such that MR(V) is a ring for all R-modules V 
was initiated. This line of  investigation was continued by Hausen and Johnson in [4], 

in which they characterized all those modules V over a Dedekind domain, D, for which 

MD(V) is a ring and also for which MD(V) = EndD(V). The structure of  MR(V) was 
investigated in [2] for finitely generated modules V over principal ideal domains R. 

In this work we turn our attention to arbitrary commutative Noetherian rings. Since 

every module can be embedded in an injective module, the following very nice struc- 

tural result of  Matlis [5] is very useful in our situation. (See [9] for an exposition of  

this result.) 

Theorem ([5, 9]). Let R be a commutative Noetherian ring. 
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(i) Every injective R-module is uniquely a direct sum of uniform injective modules. 
(ii) The map P ~ E(R/P) yiehts a one-one correspondence between the prime 

ideals P o f  R and the isomorphism classes o J" uniform in/ective R-modules, where 
E(R/'P) is' the injective hull of  R/P. 

(iii) I f  P is' a prime ideal of  R, then eveo' element o f  E(R/P) is annihilated b)' 
some power q f  P. 

From this result, if  one focuses on uniform injective or injective modules much 
can be said. When investigating near-rings of  homogeneous functions, a natural first 
question to ask is "When is MR(V) a near-field?". (See [6].) Using a result from 
[14], we give a complete answer (Theorem 2.2) to this question for modules over 

commutative rings. 
Following the lead of  Hausen and Johnson one might then ask "When is MR(V) a 

ring?" or "When is MR(V) = EndR(V)?". We consider these questions in Section 2, 
finding in many situations that Me(V) is a ring if and only if it is a commutative ring. 
For finitely generated injective modules, we characterize when MR(V) is a ring. 

To the best o f  the authors' knowledge, all previous examples of  rings of  homo- 
geneous functions, MR(V), turned out to be commutative when R is a commutative 
ring. We explore this relationship further, finding that this is indeed the case in many 
instances but also showing that there exist modules V over a commutative ring R such 

that MR(V) is a ring but is not commutative. 
In Section 3 we study a particular class of  examples. Besides providing some exam- 

ples of  our results and some counter examples to possible variations, perhaps the main 
reason for considering this class of  examples is to provide new examples of  uniform 
injective modules with which one can calculate. Although there is extensive literature 
on injective hulls there are very few concrete examples other than the types provided 
by modules over Dedekind domains and modifications of  these. Our examples should 

help fill this gap. 

Conventions. Unless stated to the contrary, all rings will be Noetherian, commutative, 
and with identity. All modules will be unitary. We will denote the collection of  R- 

modules by mod-R and the injective hull of  an R-module V by E(V)  or ER(V) when 

we need to emphasize the ring. 

2. When is MR(V) a ring? 

The main purpose of  this section is to investigate the above question. However, we 

first determine when MR(V) is a near-field for any commutative ring R and VE mod-R.  
When :'fin(V) is a near-field, then each nonzero f ~ M R ( V )  is an invertible function. 
From this we see that, in this case, EndR(V) is a division ring, for if f ~  EndR(V) is 
an invertible function, then f - 1  E Endn(V). We also make use of  the following result 

o f  Ware and Zelmanowitz [14]. 
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Theorem 2.1. Let R be a commutative ring and V E mod-R. Then EndR(V) is a 
division ring if and only if  ( . )  [AnnR(V) is a nonmaximal prime ideal and V is 
R-isomorphic to Q(R/AnnR(V)), the quotient field of R/Annlc(V)]. 

Our characterization o f  those MR(V) that are near-fields now follows. 

Theorem 2.2. Let R be a commutative ring and V ~ mod-R. The Jollowing are equi- 
valent: 

(1) Me(V) is" a near-field; 
(2) condition (*) of the above theorem holds; 
(3) EndR( V ) is a field; 
(4) MR(V) is a field. 

Proof.  (1) =~ (2): As we noted above, MR(V) a near-field implies EndR(V) is a 
division ring so from the Ware-Zelmanowitz theorem we have (2). 

(2) ~ (3): From ( , )  one obtains that EndR(V) is ring isomorphic to Q(R/AnnR(V)) 
and so is a field. 

(3) =~ (4): From (3) we have (*) of  Theorem 2.1 and so V is R-isomorphic to 
Q(R/'AnnR( v ) ). Therefore 

M R ( V ) = mRi,4nn.~( V)( V ) ~ mRiAnn,~( v)(Q(R/AnnR( V )))  

=- M~(R/A,7,R(v))(Q(R/AnnR( V ) ) ). 

This last equality follows from the general argument that if D is a domain with 

field of  quotients Q(D), then MD(Q(D)) = MQ(D)(Q(D)). In fact since D C Q(D), 
MQ(D)(Q(D)) C MD(Q(D)). If  a/b~ Q(D), f ~MI)(Q(D)), vEQ(D), we have b f ( (a/v)  
v) = f (au)  = av so f ( (a/b)v)  = (a/v) f (v) .  Thus we obtain MR(V) ~- Q(R/AnnR(V)), 
again a field. 

Since (4) :~ ( I )  is clear, the result is established. [] 

Now, as usual, let R be a Noetherian commutative ring and suppose V is a uniform 

R-module. Then using the Matlis Theorem and the fact that V is uniform we get 

V C_ E(R/P) for some prime ideal P of  R. Let Re denote the localization o f  R at the 

prime ideal P. From [5], each r E R -  P determines an automorphism of  E(R/P) (via 

left multiplication) and further E(R/P) is an Re module and as such is isomorphic 

to E(Rp/PRp). From [12] or [5], if ~b c EndR(E(R/P)) and n a positive integer, then 
there exists r,,,/s~ ERp such that (h(e) = (rn/s,,)e, for each e E (0: P~) = {v ~ E(R/P) I 
P% = 0}. 

Let x C V, f , g  E MR(V) and let X = Rx, the cyclic submodule generated by x. 

Then fLx and g!x are in EndR(X), so by the injectivity of  E(R/P) there exist f , o  E 
EndR(E(R/P)) such that ~ x  = f ix and -~71x = glx. So there exist r/s, r'/'s' E Rp such 
that f ( x )  = (r/s)x and g ( x ) =  (r'/s')x. Thus g f (x )  = (rr'/ss')x = f g(x). This gives 

the next result. 
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Theorem 2.3. I f  V is a unijorm R-module then MR(V)  is a commutative ring. 

Let V E mod-R and suppose every element of  V is annihilated by some power o f  a 

nonzero prime ideal P o f  R. We say x E  V has P-ht n i f P " x  --- 0 but Pn- Ix  :~ O. We 

often use this concept of  P-ht in various places in our investigation. We next show 

that in the case o f  finitely generated modules, i f  M e ( V )  is a ring then it must be a 

commutative ring. 

Theorem 2.4. I J V  is a f initely generated module then MR(V)  is a r&g i f  and only 
~ ' M n ( V )  & a commutative ring. 

Proof. We suppose MR(V)  is a ring and prove it is commutative by induction on the 

uniform dimension o f  V. From the previous theorem, i f  u.  d im(V)  = 1 then M e ( V )  is 

a commutative ring. Now suppose M n ( V )  is a ring and u.  d im(V)  <_ n implies MR(V)  
is commutative, and let W be an R-module with u . d i m ( W )  = n + 1. Then E ( W )  = 

E(R/PI ) ~ . . .  ~ E(R/Pn) [9, p. 282, Ex. 5] and without loss o f  generality we assume 

that P,,+I is maximal among {PI . . . . .  P n + l } ,  i.e., P,,+x C_Pi implies P,,+j = Pi. We also 

assume for some k, I < k < n + 1, P~ = Pk+l . . . . . .  P , -1  and for i < k, Pi ¢ P , - I .  
From the Prime Avoidance Theorem [1, p. 56], there exists r C P,,+I\(U~[-~ 1 Pi). It 

follows from Matl is '  Theorem and the fact that W is finitely generated, that we can 

choose a positive integer m such that rm(xl + . . .  + x , , + l ) =  (rm(xj + " "  +x~.-I ) or is 

0 i f k  = 1, for each w = x l  + . . .  +x ,+j  E W, xi~E(R//Pi) .  
Now suppose MR(W)  is not commutative. Then there exist f , g  E M e ( V )  such that 

H :=  f g  - g f  ¢ O. Let a~ + -- .  + a,,+l E W be such that H(al + . . .  + a,+l) =- 

bl + - . .  + b~+l ¢ 0. 

We claim MR(rmW) is a ring (which might be the zero ring). I f  not, there exist 

f l , g l , h l  E M R ( r ' W )  and x = rma ~ rmW such that f i ( g j ( x )  + hi (x) )  ¢ f l g l ( x )  + 
f l h t ( x ) .  We define f l  E M e ( W )  by f l ( w )  = fl(rmw) and similarly extend gl to (Ji, hi 

to/~1. Since multiplication by r m acts as an isomorphism on E(R/PI ) ~ . . .  ~?E(R/'P~-I ) 
[5] and rmW C E(R/PI )c~...+E(R/'P~._I ), we have r " J ) ( g l ( x ) + h l ( x ) )  y~ r m ( f i g l ( x ) +  

f t h l ( x ) ) .  On the other hand, f l ( g l ( a )  + h i ( a ) )  = f jo0j(a)  + f l f z l (a)  since Me(V)  is 

a ring and this in turn implies r m f ~ ( g l ( x ) +  hi (x) )  =- r m ( f l . q l ( x ) +  f l h l ( x ) ) .  This 

contradiction shows that we must have ~V[R(rml/v) a ring. 

Now f~,'"'w,g[r"'w E MR(rmW), u" d im(rmW) < n and M e ( r m W )  a ring implies, 

by  the induction hypothesis, that Hl~,,,l~,, = 0. So 0 = H(rmal + . . .  + r ' a k - i )  =- 
H(rm(al + . . .  +an+~ ) =- rm(bl + " "  + b k - I  ) = rmbl + " "  ÷rmbk- I  so bl = b2 . . . . .  

bk-j  = 0, again since r m acts as an isomorphism on E(R//P~ ) ~ . . .  ~ E(R/"P~--1 ). 

Thus if  there exists another prime ideal among the Pi that is maximal (but not 

equal to P,,+I), then using the above arguments we would find H -~ 0 and M R ( W )  

commutative. So we now assume that Pi-CPn+l =:  Q for i = 1 . . . . .  n. Hence we can 

regard E ( W )  as a Rc2-module. I f  Q -- {0),  v is torsion-free and the result follows 

from [13, Theorem 4.1]. Thus we take Q ¢ {0). 
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Let W* = IV N (E(R/Pk) '~ . - .  ~E(R/P~+~) and from above we have H ( W ) C  W* 
and each element in W* is annihilated by some power of  Q. We next choose ~ ~ W 

such that H ( w )  has maximal Q-ht (recall W is finitely generated). Note further that 

H(~ )  ¢ 0 implies Q-ht(H(~)) >_ 1, Let X = RQ,~ f~ W and s E QQ-ht(H(~))-| such that 

Q-ht(sH(~)) : 1. Define g:W--+ W by 

= [ sH(w) if  w E X, 
{(w) [ 0 otherwise. 

We show ( ~ MR(W). First, i f  w E X then tw E X so t{(w) = tsH(w) = sH(tw) = 
#(tw). Next, if  w ¢ X and t E Q, then, from the maximali ty of  H(~) ,  we see that 

Q-ht(sH(w)) _< 1 so for t E Q, tsH(w) = 0. From this we see ((tw) = t{(w). Finally, 

if  w ¢ X and t ~ Q then rw ~ X since rw ~ X =~ w : (1 / r ) ( rw)  E X. Therefore 

E E MR(W). 
If  f ( X ) C _ X  and g(X)C_X, say f ( : 0  = (rl/"sl)0~ and g ( ~ ) =  (r2/s:)~ then gf(oO = 

fg(~)  so H(~.) = 0, contrary to the choice of  ~. So without loss of  generality we take 

f ( X )  ~ X  which means f ( ~ )  ~ X.  Consequently, ~(1 -~ f ) (~ )  = ~(~ + f ( z ) )  = 0 
since ~ + f ( ~ )  ¢ X while ( ( .  1 + ( .  f ) ~  = ( (~ )  ¢ 0, contrary to the fact that MR(W) 
is a ring. Thus we conclude that H = 0, i.e. f g  = ,qf for all f , g  ~ MR(V). [] 

We next obtain another sufficient condition for Me(V)  to be a ring, in fact a com- 

mutative ring. We will say V has no containment when the injective hull of  V,E(V) = 

~ic1  E(R/Pi) is such that Pi ~ pj i f  i ¢ j .  

Theorem 2.5. Let V c_ ~iuE(R/ , 'p i )  such that V has no containment. Then MR(V) 
is a commutative ring. 

Proof. We show MR(V) is commutative, hence a commutative ring. Suppose the con- 

trary. Then there exist f , g  E MR(V) and x E V such that ( 9 f -  f.q)(x) ¢ O. Let 

xj, . . . .  ,xj,. be the nonzero components of  x and Yk,,..-,)"k,., the nonzero components of  

( g f -  fg)(x) .  Using Lemma 3.55 o f  [11], choose 

(where we take s = 1 i f m  = n = 1 and j2 = kl) ,  and let N = max{Py,-htxj, , . . . ,  
PL,-htxj.,, Pk,-htx~,, . . . . .  Pk,-htxk,,,}. Then since s acts as an isomorphism on E(R/P~,,), 
the only nonzero component of  s N ( . q f -  fcd)(x) is sNy~,. But then 0 ¢ sXyx, = 
SN(.qf -- f g ) (x )  = ( g f  -- .fg)(sNx) which means sXx ¢ 0 so some component of  x 

must be in Pk~, say j l  ~ kL, i.e., 0 ¢ SNYk, = ( o f  -- f g )  s" Xj~. 
Let W = V  N E(R,/P~,). If  we can show h ( W ) E W  for all hEMR(V) ,  then since 

sNxjL E W, we have g f C f 9  in MR(W). But W is uniform, so from Theorem 2.3, 

MR(W) must be a commutative ring. This contradiction will give us the desired result. 

To this end suppose w E  W and h(w)~ W for some hEMR(V).  Then h ( w ) ¢ 0  and 

h(w) must have nonzero components other than in E(R/Pk, ). We let vt,/~ . . . . .  wFj be 
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the nonzero components o f  h(w) and without loss o f  generality assume #j C k l .  Let 

t ~ P k , \ P / ,  and let M>_Pk,-htw. Then O=h(O)=h( tMw)=tMh(w)=tMw/~  + . . .  + 
tMwi,~ ¢ 0  since t ~ P / ,  and multiplication by t acts as an isomorphism in E(R/P/,) .  
This contradiction shows that we must have h ( W ) C  W for all h c MR(V). [] 

We show that the converse o f  the above theorem is true for injective modules. 

However,  we first give a characterization o f  "no containment" in terms o f  properties 
o f  R and V. 

Theorem 2.6. Let  V c mod-R. Then V C (~i6lE(R/"pi) with Pi C_Pj Jbr i 7~ j i f  and 
only' i f  Jbr x , y  ~ V* = V -  {0}, R x A R y  = {0} implies AnnR(x)~AnnR(y) .  

Proof.  First note that VC_ (~)i~1E(R/Pi) if  and only i f  E ( V )  = (~)~.~AE(R/P;~) with 

p;. C p;: for 5~ ¢ 2' [9], where A C I, 
Suppose first that E ( V )  = ~]);~.IE(R//P;.) with P;~ ~=P;, for 2 ¢ 2'. Let x , y  E V* 

with Rx ~ Ry = {0}, say x = xl + •. • + xn with xi ~ E(R,/'P;., )* and y = y,. + • • • + Ym 
with y / C  E(R/'P;~j)*. From [11, Lemma 3.55], we find there exist 

hence there exist ni such that s~xi = 0 for i ¢ j but s~!~xj ¢ O. From this Rx A 
E(R/'P;., ) 7 ~ {0} for i --- 1,2 . . . .  , n and, similarly, Ry  n E(R/P2., ) ¢ {0} for j = r . . . . .  m. 

Since Rx MRy = {0) we have r > n. 

We now claim ~ = R;.,. In fact we show that, i f  W C E(R/'P), then for 

any w E W*, ~ w )  --= P. We know P~w -- 0 for some m, so P_C Ax/~kw.  

Conversely, i f  r E ~ then r m ~ AnnR(w) for some m. But then r" E P since 

elements not in P act as isomorphisms on E(R/P).  But then r E P. 

Assume AnnRxC_AnnRy and note AnnR(x)= ~i'=1 AnnR(xi), AnnR(y)=-(]'f=r AnnR(yy). 
Then 

P;., = ~ -= AnnR(xi) C AnnR(yj) 
i = 1  i = l  i = 1  ' =  " 

j~[ j~r 

But P;,,, D ["]i'=1P~, implies P;.,,, DP~., for some i, [11, Lemma 3.55], a contradiction, so 

we must have AnnR(x) ~ AnnR(y). 
For the converse, suppose E ( V )  = (~.~AE(R/'P~.) but Pi.~ <_ P;.., for some 2t -¢ )~2. 

Let x be nonzero in V Cl E(R/P;., ) and y nonzero in V ~ E(R/;P;= ). Since P "  ;.x = 0 for 

some m, there exists r E R such that 0 ¢ rx E AnnR(P;., ) so P;., C_AnnR(rx). Again, 

since elements not in P;.~ act as isomorphisms on E(R/P;., ) and rx  E E(R/P;., ) we 

must have AnnR(rx) = P;.,. Similarly, there exists s E R such that AnnR(sy) = P;,_. 
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Since x ¢ E(R/P;,,) and y E E(R/'P~:), Rrx N Rsy = {0}, but Anne(rx) =- P~, C_ 
P~_ = AnnR(sy), contrary to our hypothesis. Hence the result. [] 

Theorem 2.7. Let V be an injective R-module, V = ~ i~ l  E(R/Pi). The following are 
equivalent: 

(1) MR(V) is a commutative ring; 
(2) V has no containment; 
(3) I f  K~ ~ R y  = {0} jor x ,y  E V*, then Anne(x) ~Anne(y); 
(4) Ende( V ) is a commutative ring. 

Proof.  From the above theorem, (2) ~ (3), from Theorem 2.5, (2) =~ (1) and clearly 

( l )  ~ (4). It remains to show (4) =~ (2). To this end suppose there is some con- 
tainment, say P1 C P2. We show EndnW is non-commutative where W = E(R/PI) 
E(R/P2). But this in turn implies Ende(V) is not commutative contradicting (4). Now 

~ Home(E(R/P:),E(R/Pj )), 6 ~ EndR(E(R/P2)) } .  7 

From [12, Prop. 4.2l],  P1 C_P2 implies there exists a nonzero /3 ~ HomR(E(R/Pt), 
E(R/P2)). But then 

hence the result. [] 

Corollary 2.8. Let V be a finitely generated injective module. Then Me(V) is a ring 
if and only iJ" V satisfies condition (3) of the above theorem. 

Proof .  Theorems 2.7 and 2.4. [] 

Corol lary 2.9. I f  R is Artinian and V injective then Me(V) is a ring if and only (f 
V satiates condition (3) of the above theorem. 

Proof.  Since R is Artinian, every prime ideal is maximal and there are only a finite 

number of  maximal ideals [1, p. 89] and so V = ~ i c l  E(R/Mi). Also each E(R/Mi) is 
finitely generated [5, Theorem 3.l 1]. I f /  is infinite then for some i ~  j ,  Mi = Mj. Let 
W = E(R/Mi)bE(R/M/)  and note that W is finitely generated. Since V ~- W ~ W' for 
some submodule W' of  V, every function f E MR(W) can be extended to a function 
f E Me(V) ( f ( w + w ' )  = f ( w ) ,  w E W, w' ¢ W') and so MR(W) can be embedded in 
Me(V). Consequently, if  MR(V) is a ring so is Me(W) and, by Corollary 2.8, condition 
(3) holds for W. Since Mi = Mj this is a contradiction which means that I must be 
finite, hence V is finitely generated. Thus when Me(V) is a ring, condition (3) holds 
for V. The converse follows from Theorem 2.7. [] 
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We next give an example to show that, without some conditions on V, EndR V can 

be a commutative ring and Me(V)  need not even be a ring. 

Example 2.10. Let R ~ ~Y2[x, y]/(x 3,x2y,xy2,x 3) and V = (x, y)/(x3,x2y, xy2, y3). We 

use representations of  classes to denote the elements of  both R and V. We observe 

first that, if ~o ~ EndR V, then the term y does not occur in q~(x). For if so, then y2 

occurs in (p(xy) which contradicts x(p(y) = ~o(xy). Similarly no x appears in ~p(y). 

Suppose now f , g  E EndR(V) with f ( x )  = ~lx +/~ly 2, g(x) = ~2x +/~2y 2, f ( y )  = 

71Y + filx 2, #(Y) = Y2Y + 62x 2 where ~i, fii, Ti,6i ¢ R. Let ~i, fii, ]i, 3i denote the 
constant terms of  the cq, fii, Ti, 6i respectively. Then x f ( y )  = y f ( x )  implies ~1 = ~;1 
and in a similar manner we get ~2 = ",~. To show EndR(V) is commutative it suffices 

to show g f ( x )  = f g ( x )  and g fO ' )  = fg(Y) .  Now, 

,qf(x) = y(~lx + / ~ l y  2 ) = gl~2 x 4- '~1 fl2fl 2 Jr- fil()'2Y + 62x2) 2 

"~ 2 
= ~ 2 x  + (~lf12 +/~l:,'~)y 

= gl 7Z2X + (:~1/~2 4- /~1;,72)y 2 = ~tg2X 4- (~l/~ 2 4- /~ l~2)y  2. 

Also, 

f q ( x )  =- f ( ~ 2 X  4- f i2y 2 ) = '2192X 4- ~2/-]t y 2 ÷ f12(TtY 4- ~5lx2) 2 

~- 9q ~2.~" 4- (~.2/JI 4- f23 '~)y  2 = ~l~2X 4- (~2/~1 4- /~2~71 )y2 

= ~g19~2 X 4- {~2/~1 4- fi23~l)y 2 ~--- #f(x) .  

In the same manner, g f O ' )  = f g ( Y )  so EndRV is a commutative ring. Define q~ 
EndR(V) by ~p(x) = y2 and ~o(y) = 0 and so q~(x) ~ Rx. Since R is a finite local ring, 

from [7, Theorem 4.2], MR(V) is not a ring. 

If  R is an Artinian ring, then from [5, Theorem 3.11], every indecomposable injective 

module is finitely generated. Thus if V C ~I'-T E(R/Pi) then V is finitely generated. 

An application o f  Theorem 2.4 yields the next result. 

Theorem 2.11. Let R be an Artinian ring and let V be an R-module with ,finite 
unijorm dimension. Then MR(V) is a ring i f  and only if  MR(V) is a commutative ring. 

From [13, Theorem 4.2], MR(V) is a ring if and only if MR(V) is a commutative 
ring when R is a Dedekind domain. An application of  Theorem 2.7 gives our next 

result. 

Theorem 2.12. Let D be a Dedekind domain and V an injective D-module, The fol- 

lowing are equivalent: 
(1) MR(V) is" a ring; 
(2) MR(V) is a commutative ring; 
(3) V has no containment; 
(4) EndR(V) is a commutative ring. 



c ~  Maxson, A.B. van der Merwe/Journal of Pure and Applied Algebra 124 (1998) 21L 226 219 

We have seen above that in several instances MR(V)  is a ring if and only if it is 

commutative and this is equivalent to no containment. It may be that there is contain- 

ment and MR(V) is still a ring. In Theorem 2.17 we show that when all summands 

of V are equal, MR(V) is a ring precisely when it is EndR(V). In Section 3 we give 

specific examples of injective modules V with containment such that MR(V)  is a ring 

with MR(V)  : :  End~(V). On the other hand, there are many situations in which V hav- 

ing containment implies that MR(V)  is not a ring. We now investigate this situation 
further. 

Recall that if W is an R-module with a non-trivial direct decomposition and MR(W) 

is a ring, then W is R-connected. (See [8] for the definition and remarks about con- 
nectedness.) 

Lemma 2.13. Let V C_ E(R//P) ~ E(R/'P), where P is a nonzero principal ideal, say 

P = (p).  I f X  = {a + b E V[P-h t (a )  =: P-ht(b)}  then X is a union o f  components 
o f  V. 

Proof. Note that 0 E X so X ~ ~. Note also that for a E E(R/P) ,  the P-ht(a) is 

the least nonnegative integer n such that p"a = 0. For suppose P-ht(a) = m so m is 

the least nonnegative integer such that pma = 0. But p C P implies pma = 0. But, 

pma = 0 implies P~a = 0 so ~ > m. 

Now take a + b E X, r C R with (say), P-ht(a)  = P-ht(b)  = z. We show r(a + b) C 
X. 

Case (i): r ~ P. Then since multiplication by r induces an isomorphism on E(R/'P), 
P-ht(ra) = P-ht(a) = P-ht(b)  = P-ht(rb). 

~ C  n Case (ii): r E Nn=l P ' Then ra = rb = O. 
Case (iii): r ~ pm\pm+l. Then r : sp  ~, s ~ P. If ~ < m, ra = rb = 0. If :~ > m, 

P-ht(ra) : P-ht(pma) = ~ -  m since p~--mpma = p~a = 0 and if { < ~ -  m, 

p/  pma = p/+"~a ¢ 0 since { + m < ~. Similarly, P-ht(rb) = .~ - m. 

We now take r ( a + b )  c X * ,  r E R ,  a + b ~  V and show a + b E X .  I f r ~ P t h e n  

as above a + b E X*. The case r E ["]~:~t pn cannot occur since r(a + b) ¢ O. Now 

suppose r E pm\p,~+l. If m > P-ht(a)  and m > P-ht(b)  then r(a + b) = 0 which 

is impossible. If m > P-ht(a)  and m < P-ht(b) then P-ht(ra) ¢ P-ht(rb), again 

impossible since ra + rb c X* .  Thus we must have m < P-ht(a)  and m < P-ht(b). 

But, as above, we then get P-ht(ra) = P - h t ( a ) - m  and P-ht(rb) = P - h t ( b ) - m .  Hence 

P-ht(a)  = P-ht(b). 

From these observations we see that if x E X, then the R-connected component 

determined by x is contained in X. [] 

Corollary 2.14. I f  V c_ E ( V )  = E(R /P)  ~D E(R/'P) where P = ( p )  is principal then V 

is not R-connected. 

Proof. Let 0 ~ a E V~(E(R /P)G{O}  ) and 0 # b E VN( {O},@E(R/P)). I f P  = {0} then 

a E Q(R)O{O} ,b  E {0}GQ(R) and since R is then a domain we see V is not connected. 
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Thus we take P # {0}. Then using Matlis' Theorem, there exist r,s E R such that 

P-ht(ra) : P-ht(sb) = 1. So X, as defined in the above lemma, is nonzero since 
ra+sbEX.  Since a = a+O ~ X,  we have {O} ~ X ~= V, i.e,, V is notR-connected. 

We note that the above lemma and its corollary hold for arbitrary direct sums. 

Theorem 2.15. Let V = @i~IE(R/'Pi) with Pi -: (P) ~ Pi for  some i # j. Then 
MR(V) is not a ring. 

Proof. Without loss o f  generality we suppose P1 = (P)  : P2 and let W ~ E(R/"PI ) 

E(R//P2). As we saw in the proof of  Corollary 2.9, Me(W) can be embedded in MR(V). 
Thus it suffices to show MR(W) is not a ring. But this follows from the above corollary 
and the remarks preceding the lemma. 

Let S be a local ring with unique maximal ideal J and suppose J is principal, 
say J : :  (a). From Krull 's Principal Ideal Theorem [11, Theorem 15.2], ht(J) < 1. 

Now let P be a prime ideal of  S, P ~ J .  For b ~ P, b = bla, for some bl E S. 
Since a ~ P, bl E P  so bj : b2a, hence b = b2a 2. By induction b E jn,  n > 1, 

consequently b ¢ [ " ] ~ 1 J ' '  But by the Krull Intersection Theorem [1 1, Corollary 8.25], 
A,,~I J~ = {0}, so P = {0}. We use these observations in our next result. 

Theorem 2.16. Let V = @,el  E(R/'Pi) with containment among the primes P,. Let R 
have the property that localization at a maximal ideal M results in a principal ideal 

MR,yr. Then Me(V)  is' not a ring. 

Proof. Again, without loss of  generality we take Pi C_P2 and consider W = E(R,/Pj ) ~  
E(R/P2). As above, it suffices to show MR(W) is not a ring. 

Let M be a maximal ideal in R containing P2. By hypothesis MRM is principal. 

Then the bijection between {P E Spec(R) ]P  C M} and {P ¢ Spec(RM)} (P ~+ PRM) 
gives PIRM C_ P2RM C MRM. From the remarks above and the bijection, we obtain the 

following possibilities, Pi = P2 -- {0}, {0} ~- P1 ~ P2 = M or P1 = P2 = M. 
If  PT = P2 = {0} then IV = E ( R / { O } ) O E ( R / { O } ) =  Q(R)¢; Q(R), where Q ( R ) i s  

the field o f  quotients of  R. But then MR(W) ~ MQ~R)(W) which is not a ring. 

If  {0} = Pt ~ P2 = M, W = Q(R) ~ E(R/'M), which has both torsion and torsion- 

free elements. Thus W is not connected and again MR(W) is not a ring. 
Finally, if P1 = P2 = M, W = E(R/M)  • E(R/M)  and is R~I isomorphic to ~'¥ = 

E(R,~t/MR,~t) ~ E(R,vt/MR,~t) [12, Prop. 5.6], i.e., ,'v/R(W) ~ MR,,(/'4/). From Corol- 
lary 2.14, MR,10Q) is not a ring, therefore the result is established. 

Since Dedekind domains R have the property o f  the above theorem, we obtain an 

alternate proof o f  (1) ~ (3) in Theorem 2.12. 
As a final situation with containment we suppose V is a finite sum of  E(R/P~) in 

which all the Pi are equal. Here we find MR(V) is a ring if and only if it is the ring 

of  endomorphisms of  V. [] 
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Theorem 2.17. L e t  V = (~ i~ l  W~ where  Wi = W, f o r  all  i c I and III ~ 2. Then 

M e ( V )  is" a ring i f  and only  ( / ' M e ( V ) : E n d R ( V ) .  

Proof .  Let ~z,: V ---. Wi and e,i: IVi ---+ V be the natural projection and injection maps 

respectively. Suppose M e ( V )  is a ring. Then for all f E Me(V) ,  f = ~ i f e ,  i~i so, 

for v E V, v = ~ i v i ,  vi = t-:i~ziv, hence f ( v )  = Y '~ , f ( v i ) .  Now let a = ~ i a i ,  b = 

~ i b i  be elements of  V and let g E M e ( V ) .  Define g(j = g(eiTri + r, i j~ j )  C M e ( V )  

where e~j takes x E Wj and injects it into the ith position in V. Therefore, for i ¢ j ,  

9(ai + bi) = 9ij(ai + eji~zibi) = gij(ai ) + g,7~ii~,bi (since eqi~zibi is in the j t h  position) : 

g(a~)+g(bi ) .  Thus g ( a + b )  = ~'~ g ( a i + b )  = ~ , ( g ( a D + g ( b ~ ) )  = E i  g(a~)+ ~-~i g(b~) = 

g ( a ) + g ( b ) .  Hence M R ( V ) C _ E n d R ( V )  and the rest is clear. [] 

3. A class of examples 

In this section we consider certain modules over the ring K[xl  . . . . .  x,]  where K is a 

field. We use these modules to determine some injective hulls. We thus provide meth- 

ods for constructing examples o f  injective hulls other than the standard constructions 

modeled after Dedekind domains. We start with two general results to be used in our 

development. 

Theorem 3.1. L e t  V E mod-R.  Then V = E ( R / P )  i f  and only i f  

(a) V is uni form,  

(b) ~ = P f o r  some v c V*,  

(c )  v = vf,, 

, , dimR~ 'PR,o (PRp)'~- I : V P n  (d) dimRe,PRp(B,,"B,-l)  = , ~ where  B, = (0 ), n = 1,2,3 . . . .  

Proof.  " ~ "  Since RIP is a uniform R-module and E(R/ 'P)  is an essential exten- 

sion of  R/'P, E ( R / P )  is uniform, hence we have (a),  and (b) was established in the 

proof  of  the Theorem 2.6. For (c) note that s ~ P and v C V* implies st" ¢ 0. 

Therefore 4)" V ---* V, qS(v) = v/1 is injective and consequently V can be identi- 

fied with V ~ = {v/1 Iv v i c  v~. Since v//s = s s - l v / s  = s - I v ~ l ,  we have V = 
(PRp)': L 

Vp. For (d), we first note that Cn,,"C,~-I = (PRp),, as Rp/PRe-vec to r  spaces where 

Cn -- (O:E(Ro/PRe)(PRp)n). (See [12], paragraph prior to Lemma 5.11.) But since 
B~ = (0" n .6(R.'p)P ) = (0:E(R/p)(PRp) ~) and E(R//P)  = E ( R p / P R p )  as Rp-modules [12, 

A ; ~  (PRp)" I 
Prop 5.6], we have dimR,,,'pR,,(B~//B ~- I )  = U---R~.PR,, ~ • 

" ~ "  From (c) we see that V can be regarded as an Re-module.  Further, ~ = 

P implies ~ p ( v ) =  PRp since 

( s )  r"v r"v "r n r n - 0 <=~ - - =  0 ~ = O. 
v = 0 ~ s' ~ . 1 s '~ 

Moreover,  V uniform in mod-R implies V is uniform in mod-Rp, hence R~ V c_ E ( R p /  

P R p )  and B~ = (0 :R~,P") = (0 :R~vPRP). For ease of  notation we let A = Rp and J = 
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PRp. Therefore we have V C_E(A,/J), Bn = (0 :vJ  n) and from (d), dimA/jBn/'Bn-I = 
j ~ , -  i 

dimA,.j-y--. Let An = ( O : E ( A / j ) j n ) .  By induction we show Bn = An for all n and 

since E ( A / J )  = ~Jn=J n we will have E(R,/P) [-Jn=l Bn = (-Jn=l AN = E(A /J )  Since 

V C_ E (A /J )  and ~Jn~=l An C_ V, the result follows. 

Clearly B0 = A0 so we assume Bk = A~ but Bk+l ~ Ak+l. Let x C Ak+l --Bk+l. Then 

x + A k  ~ Bk+l/)tk C_Ak+I,/'Ak. This in turn implies that dimA/jBk+l/Bk = dimA/jBk-a/'Ak 

< dimA,,jAk-1,/A~ = dimA/jJn-l / 'J  n, a contradiction. Hence the result follows. 

Theorem 3.2. Let  V E mod-R and let M be a max imal  ideal o f  R. Then V = 

E(R/ 'M) i f  and only i f  
(a) V is uniform, 

(b)  v/Anne(v)  = M Jor some v E m * ,  

(c) dimR/M(Bn/Bn-1) = d i m R / M ( ~ )  where Bn is defined above. 

Proofl  From the previous theorem, it suffices to verify 

(i) dmTe" ,."~t Bn,','Bn-1 = dimeM ,'MR~ ( 8~"~ ), 

(ii)  dtme/M ~ = dimR,,/'MR.~1 (MRM )n-I /(MRM )n and 

(iii)  V = VM if V C E(R/M) .  
We note that (i)  follows from the fact that the map r + M ~ r/1 4. MRM is an 

isomorphism. In fact, i f  r,/1 +MRM = O, then r/1 = m/s which in turn implies tsr = tm 

for some t ~ M and so r E M. To verify that the map is surjective, it suffices to show 

that 1//s4.MR~! is an image for s ~ M. But s ~ M implies there is some r E R, m C M 

such that rs 4. m = 1. So 

1 4- MRM 4. MRM 4. MRM ~ 4, MRM. 
S 

For (ii) suppose {ml + M n . . . . .  mk + M n} is l inearly independent over R/M.  Then 

{m~/1 + (MRM)", . . . .  mk/1 4, (MRM) n } is linearly independent over MRS,," I f  not, ~ik=~ 

(ri//si 4. MRM)(mi/1 + ( M R u )  n) = 0 so ~-~-1 rimi//si = m/t, m E M n, t q~ M.  Hence 

tttt V "k z.,i=, q i r i m i - q m )  = O, t' ~ M,  qi = I-Ij~isj, q = [I~=, and so ~ _ ,  t'tqirimi E M n. 

But this implies ml 4. M n , . . . , m k  4. M ~ 

Conversely, if  {mb/sl + (MRM ) n, . . . .  
so is {ml 4 " M n , . . . , m k  4"Mn} • I f  not, 

~ = l  rimi E M n. From this we get 

are linearly dependent over R/M.  
mk/"sk + (MRM) n } is linearly independent then 

then we have ~'~_l(ri 4. M)(mi  + M n) = 0 or 

¥ 5- ~ (M'RM)n so ~ + MRM + (M'RM)" = O, 
i = 1  i = 1  

a contradiction. 
Finally for (ii i)  let v/s E V,~t. Then s ~ M implies there exist r E R, m E M such 

that rs + m = 1. We choose # such that m% = 0 and find v/s = ((rs + m) / s )% = w/ l  

for some w E V. Therefore V = V.~t. [] 
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We apply the above theorem to show that certain modules are uniform injective. Let 
R = K[x, y] where K is a field and let 

F = ( x i j l i ' J  ~ 77) 
(xiyJ [i >_ 0 or j > 0} '  

where (xiy j I i , j  c Z) is the R-submodule o f  K(x, y )  generated by {xiy j j i , j  E Z} and 
( x i y !  i >_ 0 or j > 0) is the R-submodule of  K(x, y)  generated by {xiy i ] i > 0 or j >_ 

m 7 / 2  0}. Each nonzero element of  V can be written uniquely in the form ~ r = l  ~r x/' , 

~ E K, (i < 0, i = l, 2, it is clear that V is uniform since each nonzero submodule of  

V contains x - I  y - l .  Moreover, v/(AnnRx-<y - l )  ----- (x, y) = M(say) ,  a maximal ideal 

of  R, and so V C_E(R/M). We next show that condition (c) of  the above theorem 
holds, consequently we will have V = E(R/M) .  

We note first that M d-t  is generated by elements o f  the f o r m  x a y  b where a+b = d - 1  
and so the images of  these elements will give a basis for the K ( =  R//M)-vector space 

M d - I / M  d. Let Bd = (0 :vM d) and B d- = {xayb[a + b > - d } .  We show Ba = Bd+ 1. 

Let xay b E M a and x~y ~ E B~+ I. We have (x~yb)(x~y ~) = 0. Otherwise, a + 6 _< - 1  

and b + / ~ < _ - - 1  which means d + / ~ < - l - a -  l - b =  - ( a + b ) - 2  < - d - 2 =  

- ( d  + 2). But this contradicts xay ~ E Bj+ l, hence we must have Bd+ I C Ba. Suppose 
x°y  b E Bd\B~-  1, so a + b  < - ( d +  1). From this we see that x - a - l y  -b-1 E M a 
since a < - l ,  b _ < - I  a n d - a -  l - b -  1 = - ( a + b ) - 2  > ( d + l ) - 2 - d -  1. 
But then ( X - ~ - l y - t ' - l ) ( x a y  b) = x - l y  - l  # 0, a contradiction to x~y b E Bj.  Therefore 

B d = B~+ 1 . 
a - ]  

We use this to show dime/M(Bd/Bd- 1 ) :-- dirnR,~ ~ It suffices to give a bijection ,, (M)' 
between {xOy b + M  d E ~ l a + b = d - 1} and {xay b + Bd-1 E Bd/Bd-1 [6 + 
- ( d  + 1)} since these are bases for the corresponding R/M-vector spaces. (Observe 

that {x<y/2 ]El +dE -> - ( d +  1)} is a basis for Bd and {x/~y/' [dl + ( 2  >_ - ( d ) )  is a 
basis for Bd-1.) The bijection is given by xa£ b + M d ~-+ x - a - l y  -b-1 + Ba noting that 

a + b = d -  1 implies - a -  l - b - 1  = - ( a + b ) - 2 = - ( d + l )  with inverse map 

given by xayi~ + Bd ~ x - a - l y  -6-1 + M d. 
In a similar manner, for R = K[xl . . . . .  x,] and 

¢" : (x~' . . .  x ,  

r" I(i  _> 0 for some i) 

we find that V is a uniform injective module, i.e., V = E ( R / M )  for the maximal ideal 
M = (xl, . . .  ,x,) of  R. The module V is uniform since each nonzero submodule contains 

1 Also, ~/AnnR(x~ 1 . . . x y  1 ) = M so V C_ E(R/M) .  In the above case, n Xl-- . . .X  n-I 2, 

we found Bd = B~+ 1 = B d + 2 _  I • For the general case one shows Bd = Bd~_~_ I • Thus we 
have a straightforward method for constructing uniform injective modules and hence 

injective hulls. We summarize in the following theorem. 

/,, 7/) ~_ Theorem 3.3. Let K be a field, let R = K[x~ . . . . .  x,], let W~ = (x~" . . . x ,  [ ~i 
<, O) C_ K(xT . . . . .  x , ) ,  generated as R-modules K(xl . . . . .  xn), W2 -- (Nil ' . .  .Xn I some [i 
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and let V = WI/'W2. Then V = E ( R / M )  where M is the max imal  ideal o f  R 9enerated 
by' {xl . . . . .  x,,}. 

Example  3.4. We use the above to give an example o f  an injective R-module W 

such that MR(W)  is a ring, MR(W)  = EndR(W) and M e ( W )  is not commutative. Let 

R = K[x ,y]  and V as defined in Theorem 3.3. Now let W = V • V and note from 

Theorem 3.3 that W is injective. We show W is locally cyclic, i.e., given any two 

elements x , y  E W, there exists a E W such that x , y  E R a .  From this, M e ( W )  = 
EndR(W) [4, Prop. 2.1] and MR(W) is noncommutative. 

Let ( a, b ), ( c, d ) E W * . We find ( e, f ) E W and r, s E R such that r( e, f ) = ( a, b ) 
and s ( e , f )  = (c,d).  First note that there exists a positive integer N such that a = 

~-2~_N<_i,j<O(3(ijxiyj)4- ~i'2, b = ~_U<i , j<O(/Ti jx iyy)4-  m2, c = ~-~_N<_i,i<o(Tijxi/)4- m 2 

and d = y]_x<_i,i<0(c$(/xiy/) + W2, 3(ij,flij, TU,~ij E K. Let e = ~_X<i,j<O(~((ixi-Xy i 4- 
7ux iy  j - N )  4- W2 and f = ~ U<~.j<O(/7~jx~-'~'y j + dsjxiy j - N )  + W2. Then x N ( e , f )  = 

(a,b)  and yN(e, f )  = (c ,d)  as desired. 

When V is a cyclic module, we know MR(V)  = EndR(V)  [7] and since R is com- 

mutative one gets M e ( V )  is a commutative ring. If  D is a Dedekind domain and V 

is locally cyclic then M e ( V )  is a ring. Hence by Theorem 2.11, if  V is injective and 

locally cyclic and R is a Dedekind domain, then M e ( V )  is a commutative ring. How- 

ever, in general as we see in the above example, if  R is a commutative Noetherian 

ring and V is an injective, locally cyclic R-module, M e ( V )  need not be commutative. 

Example  3.5. More injective hulls over polynomial  rings. As above, let K be a field 

and R = K[xl,x2 . . . . .  x,,]. As usual we denote the injective hull OfA V by EA(V) where 

V E mod-A. Fix p E {1,2 . . . . .  n} and let F = K(xp+l  . . . . .  Xn) and S = F[x l  . . . . .  Xp]. 
Let I and I e be the ideals generated by xj . . . .  Xp in R and S respectively. Since we 

have a workable description of  Es(X/I e) (i.e., 

Es(S,/[e) ~s (x~' ...x/p:' [ :i ~ 7/) 

fx '. x "l some :, > 0t 
f), - ! : ,  

where {x~' . . .Xp I:i E 77) and (x: i' . . . xp  I some  :i _> 0) are generated as F-vec tor  

spaces or S-modules) ,  the same will be true o f  ER(R/I) when we show ER(R/I)  ~-e 

Es(S/Ie).  To this end, we first show RI = Ss<.. Let a E SI~., a = :~//7 where ~,/7 E S, 

/7 ~ I e. There exists 7 E K[Xp+l  . . . . .  xn] such that 7:~, 7/7 E R and 7/7 ~ I .  Hence 

a = ~//7 = 7~/7/J E Rs. Since the reverse inclusion is clear the result follows. Further, 

leSs< • = ISs< = / R s .  Therefore Es(S,,,'I e) ~--s,, Es:~(Ss</IeS: < ) = ER:(Rs/'IRs) ~-R, Es~,(RI'7) 

and so ER(R/I) ~-R Es(S/U) .  
If  R = K[xi . . . . .  xn] and V is an injective R-module we know V = (~:,EA E(R/P:.) 

where the P:. are prime ideals o f  R. I f  these P:  have a rather nice form we can 

characterize when M e ( V )  = EndR(V). We note that the module W of  Example 3.4 

satisfies our conditions. 
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T h e o r e m  3.6. Let  R = K[x~ . . . .  ,x~], V = (~;.G4(R/P;~), where ever), P2. is genera ted  

by some  subset  o f  {x~ . . . . .  x , } .  Then M e ( V )  = E n d e ( V )  i f  and  only i f  f o r  any  xi E 
{Xl . . . . .  x~}, there is at mos t  one P;. such that P2. = (xi}. 

Proo f .  I f  P;., = (x~) = P;~: for 2~ # ).2 then M e ( V )  is not  a r ing by  Theorem 2.14 so 

the condi t ion  is necessary.  W e  establ ish the converse  in a sequence o f  steps 

(1)  E(R,/P;.) is loca l ly  cycl ic  i f  P;~ is genera ted  by  at least  two e lements  f rom 

{x~, . . . ,x~} .  To see this, suppose  P~ = (x~ . . . . .  xk), k _> 2 and let 

O ~= a, 0 7 ~ b q E(R/'P2.) 
(x/~'...x/~: I some ( i  _> O) 

where  (x/1 ' . . . x2  ~: I~i E 7/> and (x/i ~ . . . x  k I some {i  >-- 0) are genera ted  as F - v e c t o r  

spaces,  F = / ((xk+l  . . . . .  x~). Thus there exists  N ~ 7/, a = ~N_</~<0e/~.../~x~ ' . . .x~  ~, 

~/,../~ E F (we  are using here only  a representa t ive  o f  the cose t )  and b = ~ . ~ < / < 0  

fi~,...~ x 1 . . .x~ , flt,.../~ E F.  I f  we take c = 2 , , < /  <O(:%.../~X~'-Nx~2.. .X k/~ + ~N<_/,<0 
/I / - - N  1~ /k fl/~.../~ x 1 x 2" x 3- . . .  ( ~ )  then x"('c = a and x ~ c  = b. 

(2)  E(R/P) . )  is loca l ly  cycl ic  i f  P~. = (xi) for some xi ~ {x~ , . . . , x~} ,  where  without  

loss o f  general i ty  we take i = 1. As  above  let 

O C a, O C b ~ E(R/'PI ) ~ (ix} I d" C 7/) 

where  (x~']( C 7/) and (x~ [ (  > O) are genera ted  as F = K(x2 . . . . .  x~)-vector  spaces.  

Then there exist  N1,N2 E 7/ such that 

e i ( x2  . . . .  ,~n, ,  x i 

N I < i < 0  

em, (X2 . . . .  , Xn) ~= 0 and 

g i(x2,. ,X , ) x i  
b =  ~2 h~(x2, , x , )  l, N2 <_i < 0 

ei(x2,...,x,z ) ,  i -N i  
g?%(X2 . . . . .  Xn) # 0 where  we take Ni _< N2. Cons ider ing  ~ U , < i < 0  ~ix: ........ )~l as an 
e lement  o f  F[[xj  ]], the power  series r ing over  F ,  we find there exists  ~ E F[ [x l  ]] such 

e ( ~ .  x,) i--Ni I (X--Ix~? ' a .  t h a t  ~ X ( ~ N I < i <  0 ............. ~X ) = 1, i.e., "~mt<i<O ~ x e t  . . . . . .  ) i--N, =,~- -  and ' = f,(x2,...,x,,) I . . . . . .  
Let  fl E (K[xi  . . . .  ,x, ,])* such that /j7--1 E R = K[xl  . . . . .  x , ] .  ( ~ - i  has only  a finite 

number  o f  nonzero  te rms. )  Let  c --  /~h ,h~:...h.~: xN ' '  Then for  r = ( f l ~ - I ) h  1h-2...h?¢-, E 

R and s = ~U~<_i<0 flgih;x'i -N' E R, where  h; = [ I i4 j  hi, we have rc = a and sc = 

~ N 2 < i < 0  ¢/, i ~ x  I = b. 
(3)  F E M R ( V )  ~ F ( a )  = ~ ; e ; n ; . ( a )  where  n;, is the projec t ion  on the 2th 

componen t  and s;. is the insert ion into the )oth posi t ion.  W e  prove  this for the case in 

which  A = {1,2  . . . . .  m}. For  each 2 E A, let Q;~ be the subset  of  A that generates  

P ; .  Let  a = (al . . . .  ,am) E V and F E M R ( V ) .  Choose  a posi t ive  integer N such that 
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xi E Qj implies x i a/ = O, for all i , j .  Without loss o f  generality we assume Q1 ---- 
{ X l , . . . , Xk } .  Then for 

& Ix~' ...xk r :i ~ 2,; v ~  
(x~ ' . . . x  k [ some El_>0) 

where again these are taken as F - -K(xk+l , . . . , x ,~ ) -vec tor  spaces, we define 

Z f, 
. . . .  x k , i f  xi ~ QI, 

Xyl )  = L ~ / : < 0  

/,--.~: :~+l :~ i f  x i ~ Q1, ~2 (~,,...~,,,)~;~'...x/ ~,+~ ...x~, 
L</,: <0  

where M E 7/, ~:, . . .  c% E F.  Inductively extend this definition to all monomials ,  hence 
we have extended the action of  R on E(R/'P~ ) to monomials  with (possibly) negative 
exponents. 

Define a similar action for the other E(R,/P:.). N o w  let ~ : [Ii>2x:[ -'¥ and /3 = x~ s' 

(hence :~-~ = ]-[i>2x~ ' and /3 -~ = x~) .  Then [:1-~(~al,[3a2 . . . . .  flare) : (0,a2 . . . .  ,am) 
and 2-1(~al , /3a2 . . . .  ,~am) = (a~,0 . . . .  ,0) .  Then . f ( ~ - l  + [ ~ - l ) ( ~ a b ~ a 2 , . . . , ~ a m  ) = 

f [ ( a ~ , 0 , . . . , 0 )  + (0,a2 . . . .  ,am)] while ( 2 - 1 +  ~ - l ) f ( ~ a l , / 3 a 2 , ~ a m ) =  f (aL ,O . . . . .  0 ) +  
f (O ,  a2 . . . . .  am). Continuing we obtain f ( ( a l  . . . . .  am)) = . f ( (a l ,O  . . . . .  0 ) )  + f ( ( O ,  a2, 

0 . . . .  , 0 ) )  + . - -  + f ( ( 0  . . . . .  0, am)) as desired. 
Combining (1),  (2)  and (3)  now gives MR(V)  = EndR(V).  [] 
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