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Abstract

We investigate the question “When is the near-ring, Mgz(V), of homogeneous functions a
ring?” for modules over commutative Noetherian rings. Particular attention is directed to the
case in which 7 is an injective module. () 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: 16Y30, 13C11

1. Introduction

Let R be a ring with identity and ¥ a unital R-module. The set, Mp(V) = {f:V —
Vif(rv) = rf(v), Vr € R, Yv € ¥V}, with the operations of function addition and
function composition is a zero-symmetric near-ring with identity called the centralizer
near-ring deiermined by (R, V') or the near-ring of homogeneous functions determined
by (R,V). This near-ring has been the object of several investigations. In [3], the
problem of characterizing those rings R such that Mgp(}') is a ring for all R-modules V
was initiated. This line of investigation was continued by Hausen and Johnson in [4],
in which they characterized all those modules ¥ over a Dedekind domain, D, for which
Mp(V) is a ring and also for which Mp(F) = Endp(V). The structure of Mp(V') was
investigated in 2] for finitely generated modules F over principal ideal domains R.

In this work we turn our attention to arbitrary commutative Noetherian rings. Since
every module can be embedded in an injective module, the following very nice struc-
tural result of Matlis [5] is very useful in our situation. (See [9] for an exposition of
this result.)

Theorem ([35, 91). Let R be a commutative Noetherian ring.
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(1) Every injective R-module is uniquely a direct sum of uniform injective modules.

(i) The map P — E(R/P) yields a one—one correspondence between the prime
ideals P of R and the isomorphism classes of uniform injective R-modules, where
E(R/P) is the injective hull of R/P.

(ili) If P is a prime ideal of R, then every element of E(R/P) is annihilated by
some power of P.

From this result, if one focuses on uniform injective or injective modules much
can be said. When investigating near-rings of homogeneous functions, a natural first
question to ask is “When is Mp(V') a near-field?”. (See [6].) Using a result from
[14], we give a complete answer (Theorem 2.2) to this question for modules over
commutative rings.

Following the lead of Hausen and Johnson one might then ask “When is Mgr(V') a
ring?” or “When is Mz(V) = Endp(V')?”. We consider these questions in Section 2,
finding in many situations that M(}') is a ring if and only if it is a commutative ring.
For finitely generated injective modules, we characterize when Mz(V) is a ring.

To the best of the authors’ knowledge, all previous examples of rings of homo-
geneous functions, Mp(V'), turned out to be commutative when R is a commutative
ring. We explore this relationship further, finding that this is indeed the case in many
instances but also showing that there exist modules ¥ over a commutative ring R such
that Mz(V) is a ring but is not commutative.

In Section 3 we study a particular class of examples. Besides providing some exam-
ples of our results and some counter examples to possible variations, perhaps the main
reason for considering this class of examples is to provide new examples of uniform
injective modules with which one can calculate. Although there is extensive literature
on injective hulls there are very few concrete examples other than the types provided
by modules over Dedekind domains and modifications of these. Our examples should
help fill this gap.

Conventions. Unless stated to the contrary, all rings will be Noetherian, commutative,
and with identity. All modules will be unitary. We will denote the collection of R-
modules by mod-R and the injective hull of an R-module ¥ by E(V) or Ep(}') when
we need to emphasize the ring.

2. When is Mgz(V) a ring?

The main purpose of this section is to investigate the above question. However, we
first determine when Mg(¥) is a near-field for any commutative ring R and '€ mod -R.
When Mz(V) is a near-field, then each nonzero f € Mg(V') is an invertible function.
From this we see that, in this case, Endg(V) is a division ring, for if /&€ Endp(V') is
an invertible function, then f~' € Endr(V). We also make use of the following result
of Ware and Zelmanowitz [14].
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Theorem 2.1. Let R be a commutative ring and V € mod-R. Then Endg(V) is a
division ring if and only if (x) [Anng(V) is a nonmaximal prime ideal and V is
R-isomorphic 1o Q(R/Anng(V)), the quotient field of RiAnng(V )}

Our characterization of those Mg(V') that are near-fields now follows.

Theorem 2.2. Let R be a commutative ring and V € mod-R. The following are equi-
valent:

(1) Mg(V) is a near-field,

(2) condition (=) of the above theorem holds;

(3) Endp(V) is a field,

(4) Mr(V) is a field.

Proof. (1) = (2): As we noted above, Mz(}V) a near-field implies Endp(V) is a
division ring so from the Ware—Zelmanowitz theorem we have (2).

(2) = (3): From (*) one obtains that Endg(}') is ring isomorphic to Q(R/Anng(V))
and so is a field.

(3) = (4): From (3) we have (x) of Theorem 2.1 and so V is R-isomorphic to
O(R/Anng(V)). Therefore

Mp(V) = Mpjgnny (V) = Mpjanngv (Q(R/Anng(V)))
= Mo(r/ama(v (Q(R/Anng(V))).

This last equality follows from the general argument that if D is a domain with
field of quotients Q(D), then Mp(Q(D)) = Myp)(Q(D)). In fact since DT O(D),
Mooy (Q(D)) S Mp(Q(D)). If a/be Q(D), feMp(Q(D)), veQ(D), we have b f((a/v)
v) = f(av) = av so f((a/b)v) = (a/v) f(v). Thus we obtain Mp(V') = Q(R/Anng(V)),
again a field.

Since (4) = (1) is clear, the result is established. [

Now, as usual, let R be a Noetherian commutative ring and suppose V" is a uniform
R-module. Then using the Matlis Theorem and the fact that V' is uniform we get
V CE(R/P) for some prime ideal P of R. Let Rp denote the localization of R at the
prime ideal P. From [5], each r€ R — P determines an automorphism of E(R/P) (via
left multiplication) and further EF(R/P) is an Rp module and as such is isomorphic
to E(Rp/PRp). From [12] or [5], if ¢ € Endr(E(R/P)) and n a positive integer, then
there exists r,/s, € Rp such that ¢(e) = (r,/s,)e, for each ec(0: P") = {ve E(R/P)|
Py = 0}.

Let x€ V, f,g € Mg(V) and let X = Rx, the cyclic submodule generated by x.
Then fjy and g)x are in Endr(X), so by the injectivity of E(R/P) there exist f.ge
Endp(E(R/P)) such that f|, = fjy and gy = g|x. So there exist r/s, ¥'/s' € Rp such
that f(x) = (#/s)x and g(x) = (+'/s")x. Thus gf(x) = (rr'/ss’)x = fg(x). This gives
the next result.
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Theorem 2.3. If' V' is a uniform R-module then Mp(V) is a commutative ring.

Let € mod-R and suppose every element of V' is annihilated by some power of a
nonzero prime ideal P of R. We say x&€V has P-ht n if P"x =0 but P 'x #£ 0. We
often use this concept of P-ht in various places in our investigation. We next show
that in the case of finitely generated modules, if Mz(¥') is a ring then it must be a
commutative ring.

Theorem 2.4. If V is a finitely generated module then Mg(V) is a ring if and only
if Mp(V) is a comunutative ring.

Proof. We suppose Mg(}') is a ring and prove it is commutative by induction on the
uniform dimension of V., From the previous theorem, if u - dim(V) = 1 then Mp(V') is
a commutative ring. Now suppose Mr(¥V') is a ring and u - dim(V') < n implies Mp(}')
is commutative, and let W be an R-module with u-dim(W) = n+ 1. Then E(W) =
ER/P)SD - DER/P,) [9, p. 282, Ex. 5] and without loss of generality we assume
that P,.; is maximal among {P,..., P11}, i.e.,, Pyy1 CP; implies P, = P;. We also
assume for some &, | <k <n+1, Py =P = --=P,and fori < k, P; # P,...

From the Prime Avoidance Theorem [1, p. 56], there exists r € P,,H\(U;‘;l P;). Tt
follows from Matlis” Theorem and the fact that # is finitely generated, that we can
choose a positive integer m such that »"(x; + -+ x,11) = (#"(x; +--- +x;_;) or is
Oifk=1,foreachw=ux + - +x,01 €W, x, EER/P;).

Now suppose Mp(#) is not commutative. Then there exist f,g € Mgp(V') such that
H:= fg—gf # 0. Let ay +--- + aps1 € W be such that H(a) + -+ + @yy1) =
by+ -+ b #0.

We claim Mz(r"W) is a ring (which might be the zero ring). If not, there exist
fl.g1, 8 € Mg(#™W) and x = #"a € ¥"W such that fi(gi(x) + hi(x)) # figi(x) +
fil(x). We define fl € Mp(W) by f—](w) = fi(#*"w) and similarly extend g, to g, 1
to h. Since multiplication by # acts as an isomorphism on E(R/P|)D- - DE(R/Ps_1)
(5] and r"W CE(R/P1 )&+ - - BE(R/Pr—1), we have 1" f1(g1(x) +(x)) # r"( f1g1(x)+
il (x)). On the other hand, f,(g,(a) + hi(a)) = f,§,(a) + filn(a) since Mp(V) is
a ring and this in tum implies ¥ f,(g;(x) + hi(x)) = r"( figi(x) + fili(x)). This
contradiction shows that we must have Mz(+" W) a ring.

Now [, gumw € Mp(r"W), u - dim(r"W) < n and Mg(r"W) a ring implies,
by the induction hypothesis, that Hj,.y = 0. So 0 = H("ay + -+ + May—y) =
H(ir™a + +ap))=r"(bi+ - +be)=#"b1+---+r"b_ so by=by=---=
br_1 = 0, again since +™ acts as an isomorphism on E(R/P) & --- & E(R/P;_1).

Thus if there exists another prime ideal among the P; that is maximal (but not
equal to P,.;), then using the above arguments we would find H = 0 and Mg(W)
commutative. So we now assume that P, C P, =: Q for i = 1,...,n. Hence we can
regard E(W) as a Rp-module. If Q = {0}, V is torsion-free and the result follows
from [13, Theorem 4.1]. Thus we take Q # {0}.
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Let W* = W 0 (E(R/Py) D --- & E(R/Ppy1) and from above we have H(W)C w*
and each element in W* is annihilated by some power of Q. We next choose o € W
such that f(w) has maximal Q-ht (recall W is finitely generated). Note further that
H(2) # 0 implies Q-ht(H(x)) > 1. Let X = Roa N W and s € Q2MHEN=1 guch that
Q-ht(sH(2)) = 1. Define /. W — W by

N sH(w) if welX,
fwy = { 0  otherwise.

We show ¢ € Mg(W). First, if w € X then tw € X so t/(w) = tsH(w) = sH(tw) =
£(tw). Next, if w ¢ X and ¢ € Q, then, from the maximality of H(x), we see that
Q-ht(sH(w)) <1 so for t € Q, tsH(w) = 0. From this we see #(tw) = t/(w). Finally,
if wée¢ X and t ¢ Q then rw ¢ X since rw € X = w = (1/r)(rw) € X. Therefore
£ € Mp(W).

If f(X)CX and g(X)CX, say f(2) = (r1/s1)2 and g(2) = (r2/s2) then g f(a) =
fg(x) so H(x) = 0, contrary to the choice of 2. So without loss of generality we take
f(X) £X which means f(x) ¢ X. Consequently, /(1 + fXa) = (x+ f(2)) =0
since 2+ f(x) ¢ X while (/- 14 ¢ f)a = /() # 0, contrary to the fact that Mr(W)
is a ring. Thus we conclude that H# = 0, i.e. fg=gf forall f,ge Mg(V). O

We next obtain another sufficient condition for Mg(V) to be a ring, in fact a com-
mutative ring, We will say V' has no containment when the injective hull of V,E(V) =
@.c; E(R/P;) is such that P, ZP; if i # j.

Theorem 2.5. Let V' C EBIEI E(R/P;) such that V has no containment. Then Mg(V)
is a commutative ring.

Proof. We show Mp(V') is commutative, hence a commutative ring. Suppose the con-
trary. Then there exist f,g € Mgr(V) and x € V such that (gf — fg)(x) # 0. Let
Xj,,...,x,, be the nonzero components of x and yy,, ..., s, the nonzero components of
(9f — fg)(x). Using Lemma 3.55 of [11], choose

() ()

(where we take s = 1 if m =n =1 and jo = k), and let N = max{P;-htx;,...,
P -htxj,, Py -htxy,.... Py -htx, }. Then since s acts as an isomorphism on E(R/Py, ),
the only nonzero component of s¥(gf — fg)x) is s¥y;,. But then 0 # ¥y, =
sN(gf — f9)x) = (gf — fg)(s¥x) which means s¥x # 0 so some component of x
must be in Py, say ji = ki, i.e, 0# ¥y, = (gf — fg)s"x),.

Let W=V N E(R/Py). If we can show A(W)& W for all h€ Mg(}'), then since
sVx;, € W, we have gf # fg in Mg(W). But W is uniform, so from Theorem 2.3,
Mz(W) must be a commutative ring. This contradiction will give us the desired result.
To this end suppose we W and h(w)¢ W for some h <€ Mg(V). Then A(w)#0 and
#(w) must have nonzero components other than in E(R/P ). We let w/,...,w,, be



216 C.J. Maxson, A.B. van der Merwe!Journal of Pure and Applied Algebra 124 (1998) 211-226

the nonzero components of 4(w) and without loss of generality assume /) #k,. Let
t€Py\Py, and let M > Py -htw. Then 0=h(0)=h(t"w)=Mh(w)=Mw, + - +
tMw,, #0 since ¢ ¢ P, and multiplication by ¢ acts as an isomorphism in E(R/P;))
This contradiction shows that we must have A(W)C W for all he Mp(V). O

We show that the converse of the above theorem is true for injective modules.
However, we first give a characterization of “no containment” in terms of properties
of R and V.

Theorem 2.6. Let V € mod-R. Then V C @D, E(R/P;) with P;CP; for i # j if and
only if for x,y € V* =V — {0}, Re "Ry = {0} implies Anng(x) L Anngp(y).

Proof. First note that V' C D, E(R/P;) if and only if E(V) = €D
P, CP; for 4 3# A [9], where A C 1.

Suppose first that E(V) = @, E(R/P;) with P, € P;, for 2 # A'. Let x,y € V'*
with Rx "Ry = {0}, say x = x; + -+ x, with x; € E(R/P;))* and y = v, + - + y»
with y; € E(R/P;,)*. From [11, Lemma 3.55], we find there exist

n
§; € rjl P; \PJ

i#f

;en E(R/P;) with

hence there exist n; such that si'x; = 0 for i # j but s7'x; # 0. From this Rx N
E(R/P;,) # {0} for i = 1,2,...,n and, similarly, RyNE(R/P;,) # {0} for j=r,....m.
Since Rx N Ry = {0} we have r > n.

We now claim /Anng(X;) = R,,. In fact we show that, if W C E(R/P), then for
any w € W*, /Anng(w) = P. We know P™w = 0 for some m, so P C /Annmw.
Conversely, if ¥ € \/Anng(w) then " € Anng(w) for some m. But then " € P since
elements not in P act as isomorphisms on E(R/P). But then r € P.

Assume AnnpxCAnngy and note Anng(x)=(V_, Anng(x:), Anng(y)= [V, Anng(y;).
Then

" n n m
N P;, = (| /Anng(x;) = \/ﬂ Anng(x;) C | () Anng(y;)
i=1 i=1 i=] j=r
m
VAnng(y)) = (P, CP;,.
J=r

But P,, 2(._, P, implies P; 2 P; for some i, [11, Lemma 3.55], a contradiction, so
we must have Annp(x) € Anng(y).

For the converse, suppose E(V) = EB;_EA E(R/P;) but P;, < P;, for some A, # 4;.
Let x be nonzero in ' NE(R/P;, ) and y nonzero in V N E(R/P;,). Since PTx =0 for
some m, there exists # € R such that 0 # rx € Anng(P;,) so P; CAnng(rx). Again,
since elements not in P;, act as isomorphisms on E(R/P; ) and rx € E(R/P; ) we
must have Anng(rx) = P; . Similarly, there exists s € R such that Annp(sy) = P;,.

J

i

I s
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Since x € E(R/P;,) and y € E(R/P;,), Rrx N Rsy = {0}, but Annp(rx) = P;, C
P;, = Anng(sy), contrary to our hypothesis. Hence the result. O

Theorem 2.7. Let V be an injective R-module, V = @, E(R/P;). The following are
equivalent:

(1) Mg(V) is a commutative ring,

(2) V has no containment,

(3) If Rx N Ry = {0} for x,y € V*, then Anng(x) € Anng(y);

(4) Endg(V) is a commutative ring.

Proof. From the above theorem, (2) < (3), from Theorem 2.5, (2) = (1) and clearly
(1) = (4). 1t remains to show (4) = (2). To this end suppose there is some con-
tainment, say Py C P,. We show Endg W is non-commutative where W = E(R/P)) &
E(R/P;). But this in turn implies Endg(V') is not commutative contradicting (4). Now

EndgW = { [1 g] o € Endp(E(R/Py)), B € Homp(E(R/P)), E(R/P>)),
i}

7 € Homp(E(R/P2), E(R/P))).0 € Endg(E(R/P2)) } :

From [12, Prop. 4.21], P, C P, implies there exists a nonzero € Homg(E(R/Py),
E(R/P3)). But then

1 0110 B 0 p 1 0
[0 0} [0 0] a ‘:0 0} {0 0} ’
hence the result. [

Corollary 2.8. Let V be a finitely generated injective module. Then Mg(V) is a ring
if and only if V satisfies condition (3) of the above theorem.

Proof. Theorems 2.7 and 2.4. [

Corollary 2.9. If R is Artinian and V injective then Mgp(V') is a ring if and only if
V satisfies condition (3) of the above theorem.

Proof. Since R is Artinian, every prime ideal is maximal and there are only a finite
number of maximal ideals [1, p. 89] and so V = P,., E(R/M;). Also each E(R/M;) is
finitely generated [5, Theorem 3.11]. If { is infinite then for some i # j, M; = M;. Let
W = E(R/M;) = E(R/M;) and note that I is finitely generated. Since V = W & W' for
some submodule W' of V, every function f € Mz(W) can be extended to a function
7 e Mp(V) (f(w+w') = f(w), w & W, w € W) and so Mg(}¥) can be embedded in
Mg(V). Consequently, if Mg(V) is a ring so is Mg(#) and, by Corollary 2.8, condition
(3) holds for W. Since M; = M, this is a contradiction which means that / must be
finite, hence V is finitely generated. Thus when Mz(V') is a ring, condition (3) holds
for V. The converse follows from Theorem 2.7. [
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We next give an example to show that, without some conditions on ¥, EndgV can
be a commutative ring and Mz(}') need not even be a ring.

Example 2.10. Let R = Z,[x, y1/(x*,x*v,x3?,x*) and V = (x, y)/(x*. x* v,x3?, y*). We
use representations of classes to denote the elements of both R and V. We observe
first that, if ¢ € EndzV, then the term y does not occur in @(x). For if so, then y?
occurs in @(xy) which contradicts x¢(y) = @(xy). Similarly no x appears in ¢@(y).

Suppose now f.g € Endp(V) with f(x) = onx + 1 3%, g(x) = tox + f2)2, f(y) =
iy 4+ 61x%, g(v) = y2v + dx? where w, i, 7,0; € R. Let &, /?,-, 7i d; denote the
constant terms of the ;, B, 74, d; respectively. Then xf(») = yf(x) implies & = ¥,
and in a similar manner we get 4> = 7,. To show Endg(V') is commutative it suffices
to show gf(x) = fg(x) and g/f(y) = fg(y). Now,

gf (x)=glox + B137) = woax + o1 f2° + Bi1(y2y + S2x°)
=% + (o1 o + B1y3)?
=mox + (0 f, + fi7)y = umx + (@ f, + Bi32)y”
Also,

Fg(x)= f(oax + ay?) = spmax + 0 f1 37 + alyiy + d1x?)?
= oyaax + (0 fy + fayd)y = waax + (@f, + B2 75
= wy00x + (B, + S8y = g/ (x).

In the same manner, gf(y) = fg(y) so EndzV is a commutative ring. Define ¢ €
Endg(V) by ¢(x) = y* and ¢@(y) = 0 and so ¢(x) ¢ Rx. Since R is a finite local ring,
from [7, Theorem 4.2], Mg(V') is not a ring.

If R is an Artinian ring, then from [5, Theorem 3.11], every indecomposable injective
module is finitely generated. Thus if ¥ C €D}, E(R/P;) then V is finitely generated.
An application of Theorem 2.4 yields the next result.

Theorem 2.11. Let R be an Artinian ring and let V be an R-module with finite
uniform dimension. Then Mg(V') is a ring if and only if Mp(V'} is a commutative ring.

From [13, Theorem 4.2], Mz(V) is a ring if and only if Mg(V') is a commutative
ring when R is a Dedekind domain. An application of Theorem 2.7 gives our next
result.

Theorem 2.12. Let D be a Dedekind domain and V an injective D-module. The fol-
lowing are equivalent:

(1) Mp(V) is a ring;

(2) Mg(V') is a commutative ring,

(3) V has no containment,

(4) Endp(V) is a commutative ring.
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We have seen above that in several instances Mz(¥) is a ring if and only if it is
commutative and this is equivalent to no containment. It may be that there is contain-
ment and Mg(}V') is still a ring. In Theorem 2.17 we show that when all summands
of V are equal, Mr(V') is a ring precisely when it is Endg(V). In Section 3 we give
specific examples of injective modules ¥ with containment such that Mg(V) is a ring
with Mp(¥V') = Endg(V'). On the other hand, there are many situations in which ¥ hav-
ing containment implies that Mz(¥) is not a ring. We now investigate this situation
further.

Recall that if /¥ is an R-module with a non-trivial direct decomposition and Mz(#)
is a ring, then W is R-connected. (See [8] for the definition and remarks about con-
nectedness. )

Lemma 2.13. Let V C E(R/P) & E(R/P), where P is a nonzero principal ideal, say
P={(p) If X ={a+bec V|P-ht(a) = P-hi(b)} then X is a union of components
of V.

Proof. Note that 0 € X so X # (). Note also that for a € E(R/P), the P-ht(a) is
the least nonnegative integer n such that p"a = 0. For suppose P-At(a) = m so m is
the least nonnegative integer such that P”a = 0. But p € P implies p”a = 0. But,
p™a =0 implies P7a = 0 so m > m.

Now take ¢ +b € X, r € R with (say), P-ht(a) = P-ht(b) = a. We show r(a+b)
X.

Case (i): r ¢ P. Then since multiplication by r induces an isomorphism on E(R/P),
P-hi(ra) = P-ht(a) = P-ht(b) = P-ht(rb).

Case (ii): ¥ € (.2, P". Then ra = rb = 0.

Case (iii): r € PP\P™ !, Then r =sp™, s ¢ P. If a <, ra=rb=0.If x > m,
P-ht(ra) = P-ht(p™a) = x — m since p* "p"a = p*a = 0 and if / < a — m,
p' pta = p’t"a # 0 since £ +m < x. Similarly, P-ht(rb) = a2 — m.

We now take r(a +b) € X*, r €R, a-+bc V and show a+b e X. If r ¢ P then
as above a + b € X*. The case r € M-, P" cannot occur since r(a + b) # 0. Now
suppose r € P™\P™"! If m > P-ht(a) and m > P-ht(b) then r(a + b) = 0 which
is impossible. If m > P-ht(a) and m < P-ht(b) then P-ht(ra) # P-hi(rb), again
impossible since ra + rb € X*. Thus we must have m < P-ht(a) and m < P-ht(b).
But, as above, we then get P-ht(ra) = P-ht(a)—m and P-ht(rb) = P-ht(b)— m. Hence
P-ht(a) = P-ht(b).

From these observations we see that if x € X, then the R-connected component
determined by x is contained in X. O

Corollary 2.14. If V CE(V) = E(R/P) % E(R/P) where P = (p) is principal then V
is not R-connected.

Proof. Let 0 #a € VN(E(R/P)S{0}) and 0 # b € ¥ N({0}E(R/P)). If P = {0} then
a € Q(R)&{0},b € {0}=Q(R) and since R is then a domain we see V is not connected.
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Thus we take P # {0}. Then using Matlis’ Theorem, there exist ,s € R such that
P-ht(ra) = P-ht(sb) = 1. So X, as defined in the above lemma, is nonzero since
ra+sbcX. Since a = a+0 ¢ X, we have {0} £ X < V,ie, V is not R-connected. [

We note that the above lemma and its corollary hold for arbitrary direct sums.

Theorem 2.15. Let V = @, , E(R/P;) with P; = (P) = P; for some i # j. Then
Mg(V') is not a ring.

Proof. Without loss of generality we suppose P = (p) = P, and let W = E(R/P|)&
E(R/P>). As we saw in the proof of Corollary 2.9, Mg(# ) can be embedded in Mgz(V).
Thus it suffices to show Mz(W) is not a ring. But this follows from the above corollary
and the remarks preceding the lemma. U

Let S be a local ring with unique maximal ideal J and suppose J is principal,
say J = (a). From Krull’s Principal Ideal Theorem [11, Theorem 15.2], ht(J) < 1.
Now let P be a prime ideal of S, P& J. For b € P, b = bja, for some b, € S.
Since a & P, b € P so b; = bsa, hence b = bya’. By induction b € J", n > 1,
consequently b € (1,2, J". But by the Krull Intersection Theorem [11, Corollary 8.25],
N2, J" = {0}, so P = {0}. We use these observations in our next result.

Theorem 2.16. Let V = ,., E(R/P;) with containment amony the primes P;. Let R
have the property that localization at a maximal ideal M results in a principal ideal
MRy Then Mp(V') is not a ring.

Proof. Again, without loss of generality we take P; C P> and consider W = E(R/P))S
E(R/Py). As above, it suffices to show Mz(W ) is not a ring,

Let M be a maximal ideal in R containing P,. By hypothesis MRy, is principal.
Then the bijection between {P € Spec(R)|PC M} and {P € Spec(Ryr)} (P — PRy)
gives P1Ry C PrRy C MRy, From the remarks above and the bijection, we obtain the
following possibilities, Py =P, = {0}, {0} =Py S P, =M or Py =P, =M.

If Py = P, = {0} then W = E(R/{0}) % E(R/{0}) = Q(R) & Q(R), where Q(R) is
the field of quotients of R. But then Mgr(W') = Mgr)(W) which is not a ring.

If {0} =P g P, =M, W=0Q(R)® E(R/M), which has both torsion and torsion-
free elements. Thus W is not connected and again Mp(#) is not a ring.

Finally, if Py = P, =M, W = E(R/M) & E(R/M) and is Ry isomorphic to W=
E(Ry /MRy ) & E(Ry /MRy ) [12, Prop. 5.6), L.e., Mp(W) = }\le“,(ﬁ/), From Corol-
lary 2.14, Mg, (M) is not a ring, therefore the result is established.

Since Dedekind domains R have the property of the above theorem, we obtain an
alternate proof of (1) = (3) in Theorem 2.12.

As a final situation with containment we suppose V is a finite sum of E(R/P;) in
which all the P; are equal. Here we find Mgp(V') is a ring if and only if it is the ring
of endomorphisms of V. [
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Theorem 2.17. Let V = @ie[ W: where W; = W, for all i € I and |I| > 2. Then
Mgr(V') is a ring if and only if Mr(V) = Endp(V').

Proof. Let n;: V — W; and ¢;: W; — V be the natural projection and injection maps
respectively. Suppose Mz(¥') is a ring. Then for all /' € Mp(V), f = > fem so,
forveV, v =73, t; = gmv, hence f(v) = 3, f(v;). Now let a = Siai b=
> bi be elements of ¥ and let g € Mg(V). Define gij = glem; + eym;) € Mp(V)
where ¢;; takes x € W; and injects it into the ith position in V. Therefore, for i # j,
gla; +b;) = gyla; + e;m:b;) = gij(a;) + gi6;m;b; (since &;m;b; is in the jth position) =
glai)+g(b;). Thus gla+b) =3, glai+b) = 3 (9(a;))+g(b)) = 3, glai)+3, 9(bi) =
g(a) + g(b). Hence Mz(V)C Endr(V') and the rest is clear. O

3. A class of examples

In this section we consider certain modules over the ring K[x|,...,x,] where X is a
field. We use these modules to determine some injective hulls. We thus provide meth-
ods for constructing examples of injective hulls other than the standard constructions
modeled after Dedekind domains. We start with two general results to be used in our
development.

Theorem 3.1. Let V € mod-R. Then V = E(R/P) if and only if
(a) V is uniform,

(b) J/Anng(t) = P for some v & V*,
(c) V="Vp,

i~ 1
(d) dimg,;pr,(Bn/By—1) = dimg,,pg, (}()£;Z)“ where B, = (0:yP"), n=1,2,3,...

Proof. “=" Since R/P is a uniform R-module and E(R/P) is an essential exten-
sion of R/P, E(R/P) is uniform, hence we have (a), and (b) was established in the
proof of the Theorem 2.6. For (c) note that s ¢ P and v € V* implies sv # 0.
Therefore ¢: V — V, ¢(r) = v/l is injective and consequently V' can be identi-
fied with ¥/ = {v/1|v € V}C Vp. Since v/s = ss~'vjs = s™'v/1, we have V =
Vp. For (d), we first note that C,/C, ; = (fﬁ;}:}; as Rp/PRp-vector spaces where
Cp, = (0:gr.pr)(PRp)"). (See [12], paragraph prior to Lemma 5.11.) But since
B, = (0:gr:pP") = (0:grpy(PRp)") and E(R/P) = E(RP/PRp) as Rp-modules [12,
Prop 5.6], we have dimg, ez, (B"/B"~") = dimg, pr, TREL".

“«<" From (¢) we see that J can be regarded as an Rp-module. Further, \/Anng(v) =

P implies \/Anng,(v) = PRp since

F\# n v 1y

<_> U:0<:>r_._:0<:>——20¢>r"v:0.
s s 1 s

Moreover, V' uniform in mod-R implies V' is uniform in mod-Rp, hence g,V C E(Rp/
PRp) and B, = (0:,vP") = (0:z,» PR?). For ease of notation we let 4 = Rp and J =
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PRp. Thercfore we have V CE(A4A/J), By, = (0:vJ") and from (d), dim,;B,/B,-1 =
dlm,u 5. Let 4, = (0:g)J"). By induction we show B, = A4, for all » and
since E(A/J) = |J, 4, we will have E(R/P) = U2, By = o, 4n = E(4/J). Since
V CE(A/J) and | J,2, 4, C V, the result follows.

Clearly By = Ag so we assume By = A; but Byy & Apy1. Letx € 444 — By, Then
X+ Ay ¢ Biy1/Ax C Axs1/Ag. This in turn implies that dim g By /Br = dimy;yBy—1/Ax
< dimyyAg-1/Ar = dimy; S J"=1/ g% a contradiction. Hence the result follows. O

Theorem 3.2. Let V € mod-R and let M be a maximal ideal of R. Then V =
E(R/M) if and only if

(a) V is uniform,

(b) /Anng(v) = M for some v e M*,

() dimpp(Br/Bn_1) = dimR/,rM(‘%;;]) where B, is defined above.

Proof. From the previous theorem, it suffices to verify
(i) dimpssBn/Bu—1 = dimp,, ar, (52= ),

(it) dimpp Mt = dimgy, gy, (MRy )"~ {(MRyr )" and

(i) ¥ = Vi if ¥ CE(R/M).

We note that (i) follows from the fact that the map » + M — r/1 + MRy is an
isomorphism. In fact, if #/1+ MRy = 0, then r/1 = m/s which in turn implies tsr = tm
for some ¢ ¢ M and so » € M. To verify that the map is surjective, it suffices to show
that 1/s+ MRy, is an image for s ¢ M. But s ¢ M implies there is some r € R, me M
such that rs+m = 1. So

] !
L+ MRy = (’ST”’ +MRM) (; +MRM) - % 4 MRy,
. :

For (ii) suppose {m; + M",...,m; +M"} is linearly independent over R/M. Then
{m/1+ MRy Y',...,m/1 + (MRM )"} is linearly independent over &‘— If not, Zl .

(rifs; +MRM)(m,/1 + (MRyY) =0 so Zl | rimls; = mit, m € M’Z t ¢ M. Hence
t(tz:l.:l qirimi—qm) =0,1' ¢ M, q; = H#lsj, q= Hf , and so Zl | ttgirim; € M".
But this implies m; + M",....my + M" are linearly dependent over R/M.

Conversely, if {m/s + (MRM)" my /sy + (MRyy )”} is linearly independent then
so is {my; +M",...,m + M"}. If not, then we have Z: (ri + M)(m; + M") =0 or
Sk rimg € M From this we get

L
7

m;
1

€ (MRy )" so Z ('—S’ +MRM) (':— +(MRM)”) -

a contradiction.

Finally for (iii) let v/s € Vis. Then s gé M implies there exist ¥ € R, m € M such
that s +m = 1. We choose 7 such that m"v = 0 and find v/s = ((rs + m)/s)Y v =w/l
for some w € V. Therefore V = Vy. U
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We apply the above theorem to show that certain modules are uniform injective. Let
R = K[x, y] where K is a ficld and let

Wy lijez)
T (xiyili>0o0r >0}

where (x'y/|i,j € Z) is the R-submodule of K(x, y) generated by {x'y/|i,j € Z} and
{(x'y/1i >0 or j > 0) is the R-submodule of K(x, y) generated by {x'y/|i > 0 or j >
0}. Each nonzero element of V' can be written uniquely in the form Y 7_, asx"')’2,
2 €K, <0, i = 1,2. It is clear that V" is uniform since each nonzero submodule of
V contains x~'y~!. Moreover, \/(Anngx~1y~1) = {x, y) = M(say), a maximal ideal
of R, and so VQE(R/M ). We next show that condition (¢) of the above theorem
holds, consequently we will have V' = E(R/M).

We note first that M7~ is generated by elements of the form x?y® where a+b = d—1
and so the images of these elements will give a basis for the K(= R/M)-vector space
M4~ UM? Let By = (0 M) and B; = {x%)’ la—&—b > —d}. We show By = B .
Let x7y® € M7 and x%y® € By, ,. We have (x*)")(x7y by = 0. Otherwise, a +ad < —1
and b+ b < —1 which meansa+b< —l—-a—-1-b=—~(@+b)-2< -d-2=
—(d + 2). But this contradicts x%y® € B, .. hence we must have B,  C B;. Suppose
x*y? € By\Bj.,, so a+b < —(d+ 1). From this we see that x *~'y~*~1 € M4
sincea< -1,b<-land —a—1-b—-1= —(a+b)—-2>[d+1)—2=d-—1.
But then (x¢~'y="=")(x?1?) = x~'y~! # 0, a contradiction to x?y® € B,. Therefore
By = Bz7+1

We use this to show dimg(By/Bg—1) = dimg, g S W)’ It suffices to give a bijection

between {x?)” + M? MM, la+b=d— 1} and {x®y* + By, € By/By_1|a+b=
~(d + 1)} since these are bases for the corresponding R/M-vector spaces. (Observe
that {x"'y"2| £, +¢3 > —(d + 1)} is a basis for By and {x"y"2|¢, +¢, > —(d)} isa
basis for By_,.) The bijection is given by x?y? + M9 s x=9=!y=P=1 4 B, noting that
a+b=d—1implies —a—1-b—1=—(a+b)—2=—(d+ 1) with inverse map
given by x?y b4+ By x~aly=bml g g

In a similar manner, for R = K[x;,....x,] and

_ (x] x4 € )
(x] ...xy | £; > 0 for some i)

we find that V' is a uniform injective module, i.e., ¥ = E(R/M) for the maximal ideal
M = {xy,...,x,) of R. The module ¥ is uniform since each nonzero submodule contains

x,_l ...xn_'. Also, \/Ann}g(xf1 ...x,,_l) =M so VCE(R/M). In the above case, n =2,

we found By = B, , = B;,,_,. For the general case one shows B; = B, . Thus we
have a straightforward method for constructing uniform injective modules and hence
injective hulls. We summarize in the following theorem.

Theorem 3.3. Let K be a field, let R = K[xi,...,x,}, let W\ = (xf' x| ey C
K(x1,...,xn). W2 = {x] 4 x| some £; > 0)C K(xi,...,x,), generated as R-modules
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and let V = W\ /W,. Then V = E(R/M) where M is the maximal ideal of R generated
by {x1,....x,}.

Example 3.4. We use the above to give an example of an injective R-module W
such that Mz(W) is a ring, Mr(W') = Endp(W) and Mr(W) is not commutative. Let
R = K[x,y] and V as defined in Theorem 3.3. Now let W = V' @& V and note from
Theorem 3.3 that W is injective. We show W is locally cyclic, i.e., given any two
elements x,y € W, there exists a € W such that x,y € Ra. From this, Mz(W) =
Endg(W) [4, Prop. 2.1] and Mz(W) is noncommutative.

Let (a,b),(c,d) € W*. We find (e, f)€ W and r,s € R such that r(e, /) = (a,b)
and s(e, f) = (c,d). First note that there exists a positive integer N such that ¢ =
> w0l X W)W, b =50 o o Byx v Y W, e =30 g i coGix )+ W
and d = 37y, o o0x ) + Wa, oy, iy, v, 0 € K. Let e = 30y (o™ +
Y TNy Wy and f =30 o 0By 4 8yx YY) + Wi, Then xV(e, f) =
(a,b) and y¥(e. /) = (c,d) as desired.

When V is a cyclic module, we know Mg(V') = Endg(V') [7] and since R is com-
mutative one gets Mgr(V') is a commutative ring. If D is a Dedekind domain and V
is locally cyclic then Mg(V') is a ring. Hence by Theorem 2.11, if V' is injective and
locally cyclic and R is a Dedekind domain, then Mz(V') is a commutative ring. How-
ever, in general as we see in the above example, if R is a commutative Noetherian
ring and V is an injective, locally cyclic R-module, Mg(}') need not be commutative.

Example 3.5. More injective hulls over polynomial rings. As above, let X be a field
and R = K[xy,x3,...,x,]. As usual we denote the injective hull of 4V by E (V) where
V € mod-4. Fix p € {1,2,...,n} and let F = K(x,41,...,x,) and S = Flxi,...,x,].
Let / and /¢ be the ideals generated by xi,...x, in R and S respectively. Since we
have a workable description of Es(S//¢) (i.e.,

(x{! ...xi,‘” |4 € Z)

XXy | some /; > 0)

Es(S/1°) =5

where {x’ ...x:f |4 € Z) and (x' ...x;,"|some {; > 0) are generated as F-vector
spaces or S-modules), the same will be true of Eg(R//) when we show Er(R/T) =4
Es(S/1¢). To this end, we first show R; = Si. Let a € Sy, a = a/f where a,f € S,
B ¢ I¢. There exists y € K[xpi1,...,x,] such that yx, yf € R and 7§ ¢ . Hence
a = ao/ff = ya/yf € R;. Since the reverse inclusion is clear the result follows. Further,
1¢S;. = IS;. = IR;. Therefore Es(S/1°) =, E5,.(S;o/I°S;-) = Ep,(Ri/IR;) =g, Er,(R/I)
and so Er(R/I) =g Es(S/I¢).

If R =K][x),...,x,] and V is an injective R-module we know V = @2611 E(R/P;)
where the P; are prime ideals of R. If these P, have a rather nice form we can
characterize when Mgz(V) = Endi(V). We note that the module W of Example 3.4
satisfies our conditions.
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Theorem 3.6. Let R = K[xy,...,x,], V = @, ((R/P;), where every P, is generated
by some subset of {x,...,x,}. Then Mp(V) = Endgr(V') if and only if for any x; €
{X1,-...xn}, there is ar most one P; such that P; = (x;).

Proof. If P;, = (x|} = P;, for 7y # 7, then Mr(V') is not a ring by Theorem 2.14 so
the condition is necessary. We establish the converse in a sequence of steps

(1) E(R/P;) is locally cyclic if P; is generated by at least two elements from
{x1,...,%,}. To see this, suppose P; = (xi,...,x;), kK > 2 and let

& xpt el

0#a, 0#bcERP;)=
7 7 ( ) (x"...x{*| some ¢; > 0)

7 ;
where (x]' x4 e Z)y and (]! b ) are generated as F-vector
spaces, F = K(xk+1,.--,%:). Thus there exists N € Z, a = ZN</1<0{X/1_“/AX{ . x,:‘,

%,.2, € F (we are using here only a representative of the coset) and b = >, <4i<0

x / _ LN A
Brosy X' xts Brgy € F 1 we take ¢ = 3y, o2 X)X X+ D e <o

Bri..c. xl/ xg 'hxg‘ . ./;") then x‘]Vc = a and xé\'c = b.
(2) E(R/P,) is locally cyclic if P, = {x;} for some x; € {x),...,x,}, where without
loss of generality we take i = 1. As above let

11/ e7)

O#a, 07éb€E(R/PI)N.<—/l-['_/~O_
X

where (x| |/ € Z) and (x{|/ > 0) are generated as F = K(xa,...,X,)-vector spaces.
Then there exist Ny, N, € Z such that

ei(x2,....xn)

a= 1
N <i<0 Silxa, .., xp)

ey, (x2,...,x,) # 0 and

gi(x2, ... %)

b =
N <i<0 h[(x2" . .,X,,)

gn,(x2,...,xn) # 0 where we take N < N,. Considering ZN.<:’<0 ?Ei i)x'l M as an

element of F[[x;]], the power series ring over F, we find there exists a € F [[xl]] such
3 N X)) =Ny - ey

that oy, ;oo =) = 1 i, Toucico '}ﬁi ™M =2 tand o' = a.

Let f € (K[xi,...,x,])* such that f2~! € R = K[x,....x,). («~" has only a finite

number of nonzero terms.) Let ¢ = mva'. Then for r = (B Ya_1h 5. hx, €

Rand s = ZNKKOﬁg,-hfx’i_N' € R, where b = [ #;, we have rc = a and sc =
Z,N’2§i<0 Z—xll =b.

(3) F € Mp(V) = F(a) = ), ¢ m(a) where m; is the projection on the /th
component and ¢; is the insertion into the Ath position. We prove this for the case in
which 4 = {1,2,...,m}. For each 1 € A, let Q; be the subset of A that generates
P;. Let a = (ay,...,am) € V and F € Mg(¥V). Choose a positive integer N such that
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x; € ; implies xa; = 0, for all i,j. Without loss of generality we assume (), =
{x1,....x¢}. Then for

(x{‘ ...x,f‘ |t e Z)

v e G v
(x)"...x;} | some £; > 0)

where again these are taken as F = K(x;41,...,x,)-vector spaces, we define

1 % / ~
<; O(xfot/,...ot/k)xl’...xk‘, if x; ¢ O,
L/ <
xlv=1¢ " / FrM b
> (s X)X g, i x e O,
L/, <0

where M € Z, a,, ...a,, € F. Inductively extend this definition to all monomials, hence
we have extended the action of R on E(R/P;) to monomials with (possibly) negative
exponents.

Define a similar action for the other E(R/P;). Now let o = [[,»,x;" and = x;V
(hence 2~ = [[,5,xY and p=' = x¥). Then f~'(aa1,Paz....fam) = (0,as,...,an)
and « '(aa, fas, ..., Pan) = (a1,0,...,0). Then f(z~' + B~V aay, Pas,...,Bay) =
fl(a,0,...,0)+(0,az,...,a,)] while («~' + B~ f(aay, fas, Pan) = f(a),0,...,0)+
f(0,as,...,a,). Continuing we obtain f((ai,...,a,)) = f((a1,0,....0)) + f((0,a,,
0,....,0)+ -+ f((0,...,0,a,)) as desired.

Combining (1), (2) and (3) now gives Mg(V') = Endg(V). O
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